PUBLICATIONS

85) Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. “N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N–C(O) Cleavage,” Org. Lett. 2017, 19, DOI: 10.1021/acs.orglett.7b02288.

84) Liu, C.; Szostak, M. “Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives,” Angew. Chem. Int. Ed. 2017, 56, DOI: 10.1002/anie.201707102.

83) Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.; Szostak, M. “Suzuki–Miyaura Cross-Coupling of Amides and Esters at Room Temperature: Correlation with Barriers to Rotation around C–N and C–O Bonds,” Chem. Sci. 2017, 8, DOI: 10.1039/c7sc02692g.

82) Nareddy, P.; Jordan, F.; Szostak, M. “Recent Developments in Ruthenium-Catalyzed C–H Arylation: Array of Mechanistic Manifolds,” ACS Catal. 2017, 7, 5721-5745.

81) Meng, G.; Szostak, R.; Szostak, M. “Suzuki−Miyaura Cross-Coupling of N-Acylpyrroles and Pyrazoles: Planar, Electronically Activated Amides in Catalytic N–C Cleavage,” Org. Lett. 2017, 19, 3596-3599.

80) Lei, P.; Meng, G.; Ling, Y.; An, J.; Szostak, M. “Pd-PEPPSI: Pd-NHC Precatalyst for Suzuki−Miyaura Cross-Coupling Reactions of Amides,” J. Org. Chem. 2017, 82, 6638-6646.

79) Huq, S. R.; Shi, S.; Diao, R.; Szostak, M. “Mechanistic Study of SmI2/H2O and SmI2/Amine/H2OPromoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals,” J. Org. Chem. 2017, 82, 6528-6540.

78) Shi, S.; Szostak, M. “Nickel-Catalyzed Negishi Cross-Coupling of N-Acylsuccinimides: Stable, Amide-Based, Twist-Controlled Acyl-Transfer Reagents via N–C Activation,” Synthesis 2017, 49, 3602-3608. (Special Issue: Nickel Catalysis). (Selected as the Front Cover). 

77) Szostak, R.; Meng, G.; Szostak, M. “”Resonance Destabilization in N-Acylanilines (Anilides): Electronically-Activated Planar Amides of Relevance in N–C(O) Cross-Coupling”,” J. Org. Chem. 2017, 82, 6373-6378.

76) Shi, S.; Szostak, M. “Decarbonylative Cyanation of Amides by Palladium Catalysis,” Org. Lett. 2017, 19, 3095-3098(Highlighted in Synfacts, 2017, 13, 0851).

75) Hu, F.; Nareddy, P.; Lalancette, R.; Jordan, F.; Szostak, M. s N−C Bond Difunctionalization in Bridged Twisted Amides: Sew-and-Cut Activation Approach to Functionalized Isoquinolines,” Org. Lett. 2017, 19, 2386-2389.

74) Nareddy, P.; Jordan, F.; Szostak, M. “Ruthenium(II)-Catalyzed Ortho-C–H Arylation of Diverse N-Heterocycles with Aryl Silanes by Exploiting Solvent-Controlled N-Coordination,” Org. Biomol. Chem. 2017, 15, 4783-4788. (Selected as the Front Cover)

73) Meng, G.; Lei, P.; Szostak, M. “A General Method for Two-Step Transamidation of Secondary Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (N-Heterocyclic Carbene) Complexes,” Org. Lett. 2017, 19, 2158-2161.

72) Liu, Y.; Shi, S.; Achtenhagen, M.; Liu, R.; Szostak, M. “Metal-Free Transamidation of Secondary Amides via Selective N–C Cleavage under Mild Conditions,” Org. Lett. 2017, 19, 1614-1617. (Highlighted at In the Pipeline) (One of the most read papers in Organic Letters in April 2017)

71) Liu, C.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. “Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling of N-Mesyl Amides by N−C Cleavage: Electronic Effect of the Mesyl Group,” Org. Lett. 2017, 19, 1434-1437. (Highlighted in Synfacts, 2017, 13, 0521).

70) Nareddy, P.; Jordan, F.; Szostak, M. “Highly Chemoselective Ruthenium(II)-Catalyzed Direct Arylation of Cyclic and N,N-Dialkyl Benzamides with Aryl Silanes,” Chem. Sci. 2017, 8, 3204-3210(Highlighted in Synfacts, 2017, 13, 0522).

pradeep-chem-sci

69) Lei, P.; Meng, G.; Szostak, M. “General Method for the Suzuki-Miyaura Cross-Coupling of Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (NHC = N-Heterocyclic Carbene) Complexes,” ACS Catal. 2017, 7, 1960-1965.

peng-neolyst

68) Liu, Y.; Liu, R.; Szostak, M. “Sc(OTf)3-Catalyzed Synthesis of Anhydrides from Twisted Amides,” Org. Biomol. Chem. 2017, 15, 1780-1785.

yongmei-anh

67) Liu, C.; Szostak, M. “Twisted Amides: From Obscurity to Broadly Useful Transition- Metal Catalyzed Reactions by N–C Amide Bond Activation,” Chem. Eur. J. 2017, 23, 7157-7173(Minireview Article).

cej-twisted-amides-review

66) Liu, C.; Meng, G.; Szostak, M. “N-Acylsaccharins as Amide-Based Arylating Reagents via Chemoselective N–C Cleavage: Pd-Catalyzed Decarbonylative Heck Reaction,” J. Org. Chem. 2016, 81, 12023-12030.

heck-sacharin

65) Shi, S.; Szostak, M. “Nickel-Catalyzed Diaryl Ketone Synthesis by N–C Cleavage: Direct Negishi Cross-Coupling of Primary Amides by Site- Selective N,N-Di-Boc Activation,” Org. Lett. 2016, 18, 5872-5875. (Highlighted in Synfacts, 2017, 13, 0083).

negishi-b2

64) Meng, G.; Shi, S.; Szostak, M. “Cross-Coupling of Amides by N–C Bond Activation,” Synlett 2016, 27, 2530-2540. ) (One of the top most read papers in Synlett).

synlett-account

63) Meng, G.; Shi, S.; Szostak, M. “Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling of Amides via Site-Selective N−C Bond Cleavage by Cooperative Catalysis,” ACS Catal. 2016, 6, 7335-7339(Highlighted in Synfacts, 2017, 13, 0084).

acs-suzuki

62) Shi, S.; Szostak, R.; Szostak, M. “Proton-Coupled Electron Transfer in the Reduction of Carbonyls using SmI2–H2O: Implications for the Reductive Coupling of Acyl-Type Ketyl Radicals with SmI2–H2O,” Org. Biomol. Chem. 2016, 14, 9151-9157.

obc-pcet

61) Hu, F.; Szostak, M. “Ruthenium(0)-Catalyzed C−H Arylation of Aromatic Imines under Neutral Conditions: Access to Biaryl Aldehydes,” Org. Lett. 2016, 18, 4186-4189.

Feng-OL-imines

60) Pace, V.; Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. “Structures of Highly Twisted Amides Relevant to Amide N−C Cross-Coupling: Evidence for Ground-State Amide Destabilization,” Chem. Eur. J. 2016, 22, 14494-14498.

CEJ-imides-abstract

59) Liu, C.; Meng, G.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. N-Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki-Miyaura Coupling via N−C Cleavage,” Org. Lett. 2016, 18, 4194-4197(Highlighted in Synfacts, 2016, 12, 1179; (Highlighted in Organic Process Research & Development, 2016, 20, 1691).

Chengwei-saccharins

58) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. “Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N−C Cross-Coupling,” J. Org. Chem. 2016, 81, 8091-8094.

Imides-JOC-toc-boc

57) Hu, F.; Szostak, M. “Ruthenium(0)-Catalyzed Hydroarylation of Alkynes via Ketone-Directed C–H Functionalization Using In Situ-Generated Ruthenium Complexes,” Chem. Commun. 2016, 52, 9715-9718.

Feng-CC-alkynes

56) Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. “Highly Chemoselective Synthesis of Indolizidine Lactams by SmI2-Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds,” Chem. Eur. J. 2016, 22, 11949-11953(Highlighted in Synfacts, 2016, 12, 1133).

Cheng-SmI2-CEJ-16

55) Nareddy, P.; Jordan, F.; Brenner-Moyer, S. E.; Szostak, M. “Ruthenium(II)-Catalyzed Regioselective C–H Arylation of Cyclic and N,N-Dialkyl Benzamides with Boronic Acids by Weak Coordination,” ACS Catal. 2016, 6, 4755-4759. (One of the most accessed papers in ACS Catal. in June 2016).

Pradeep-amides-ACS

54) Shi, S.; Szostak, M. “Efficient Synthesis of Diaryl Ketones by Nickel-Catalyzed Negishi Cross-Coupling of Amides via Carbon–Nitrogen Bond Cleavage at Room Temperature Accelerated by Solvent Effect,” Chem. Eur. J. 2016, 22, 10420-10424.

Cheng-Negishi

53) Liu, C.; Achtenhagen, M.; Szostak, M. “Chemoselective Ketone Synthesis by the Addition of Organometallics to N-Acylazetidines,” Org. Lett. 2016, 18, 2375-2378. (Highlighted in Synfacts, 2016, 12, 732). (Highlighted on Organic Chemistry Portal)

Chengwei-azetidines

52) Liu, Y.; Meng, G.; Liu, R.; Szostak, M. “Sterically-Controlled Intermolecular Friedel-Crafts Acylation with Twisted Amides via Selective N–C Cleavage under Mild Conditions,” Chem. Commun. 2016, 52, 6841-6844.

Yongmei-abstract

51) Shi, S.; Meng, G.; Szostak, M. “Synthesis of Biaryls via Nickel Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Cleavage,” Angew. Chem. Int. Ed. 2016, 55, 6959-6963. (Highlighted on http://chemistry.rutgers.edu/). (Highlighted in The Celebration of Scholarship 2017).

Cheng-Suzuki-ACIEE

50) Shi, S.; Lalancette, R.; Szostak, M. “Cyclization of Imides to 2-Azabicycles via Aminoketyl Radicals using SmI2–H2O: Reaction Development, Synthetic Scope, and Mechanistic Studies,” Synthesis 2016, DOI: 10.1055/s-0035-1560437. (Special Issue: Cyclization Tactics and Strategies). (Highlighted as a News article).

Cheng-Synthesis-abstract

49) Hu, F.; Lalancette, R.; Szostak, M. “Structural Characterization of N–Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N–C Cleavage,” Angew. Chem. Int. Ed. 2016, 55, 5062-5066.

Feng-ACIEE-TA-abstract

48) Meng, G.; Szostak, M. “Palladium-Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Cleavage: General Strategy for Amide N–C Bond Activation,” Org. Biomol. Chem. 2016, 14, 5690-5707. (New Talent Issue).

Meng-OBC-abstract

47) Meng, G.; Szostak, M. “Rhodium-Catalyzed C–H Bond Functionalization with Amides by Double C–H/C–N Bond Activation,” Org. Lett. 2016, 18, 796-799. (The top most accessed paper in Org. Lett. in February 2016).

Meng-OL-CH-activation-abstract

46) Patel, M.; Luo, F.; Khoshi, M. R.; Rabie, E.; Zhang, Q.; Flach, C. R.; Mendelsohn, R.; Garfunkel, E.; Szostak, M.; He, H. “P Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism,” ACS Nano 2016, 9, 2305-2315. (Highlighted on Science News)

nn-2015-07054e_0010

45) Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. “Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity and Synthetic Utility,” J. Am. Chem. Soc. 2015, 137, 14473-14480. (Highlighted in Synfacts, 2016, 12, 213).

Feng-GO-JACS-abstract

44) Shi, S.; Szostak, M. Aminoketyl Radicals in Organic Synthesis: Stereoselective Cyclization of 5- and 6-Membered Cyclic Imides to 2-Azabicycles using SmI2–H2O,” Org. Lett. 2015, 17, 5144-5147.

Cheng-OL-abstract

43) Meng, G.; Szostak, M. “General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically-Controlled Chemoselective N–C Activation,” Angew. Chem. Int. Ed. 2015, 54, 14518-14522.

Meng-ACIEE-Hecki-abstract

42) Meng, G.; Szostak, M. “Sterically-Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides,” Org. Lett. 2015, 17, 4364-4367. (Highlighted on Organic Chemistry Portal).

Meng-OL-Suzuki-abstract

41) Hu, F.; Szostak, M. “Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond,” Adv. Synth. Catal. 2015, 357, 2583-2614. (VIP paper).

Isox-review-abstract

40) Szostak, R.; Aubé, J.; Szostak, M. “Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon Bridged Twisted Amides using ab Initio Molecular Orbital Methods. Implications for Amidic Resonance along the C–N Rotational Pathway,” J. Org. Chem. 2015, 80, 7905-7927.

joc-calc-abstract

39) Szostak, R.; Aubé, J.; Szostak, M. “An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway,” Chem. Commun. 2015, 51, 6395-6398.

ChemDraw CC calculations-abstract

38) Hu, F.; Szostak, M. “Pd-Catalyzed C–H Activation: Expanding the Portfolio of Metal-Catalyzed Functionalization of Unreactive C–H Bonds by Arene–Chromium p-Complexation,” ChemCatChem 2015, 7, 1061-1063. (Highlight Article).

chemcatchem-abstract


Prior to Rutgers:

37) Szostak, M.; Spain, M.; Sautier, B.; Procter, D. J. “Switching between Reaction Pathways by an Alcohol Cosolvent Effect: SmI2–Ethylene Glycol vs SmI2–H2O Mediated Synthesis of Uracils,” Org. Lett. 2014, 16, 5694-5697.

36) Szostak, M.; Spain, M.; Eberhart, A. J., Procter, D. J. “Mechanism of SmI2/Amine/H2O-Promoted Chemoselective Reductions of Carboxylic Acid Derivatives (Esters, Acids, and Amides) to Alcohols,” J. Org. Chem. 2014, 79, 11988-12003. (Special Issue on Mechanisms in Metal-Based Organic Chemistry).

35) Szostak, M.; Spain, M.; Procter, D. J. “Selective Synthesis of a,a-Dideuterio Alcohols by the Reduction of Carboxylic Acids Using SmI2 and D2O as Deuterium Source under SET Conditions,” Org. Lett. 2014, 16, 5052-5055.

34) Szostak, M.; Lyons, S. E.; Spain, M.; Procter, D. J. “Mechanistic Investigation of the Selective Reduction of Meldrum’s Acids to b-Hydroxy Acids using SmI2 and H2O,” Chem. Commun. 2014, 50, 8391-8394. (Special Issue on Non-Innocent Ligands).

33) Szostak, M.; Spain, M.; Procter, D. J. “Ketyl-Type Radicals from Cyclic and Acyclic Esters are Stabilized by SmI2(H2O)n – The Role of SmI2(H2O)n in Post-Electron Transfer Steps,” J. Am. Chem. Soc. 2014, 136, 8459-8466.

32) Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. “Highly Chemoselective Reduction of Amides (Primary, Secondary and Tertiary) to Alcohols using by SmI2/H2O/Amine under Mild Conditions,” J. Am. Chem. Soc. 2014, 136, 2268-2271. (Highlighted in Chemistry World 2014/04; one of the most accessed papers in JACS in March 2014, Highlighted in Synfacts, 2014, 10, 527).

31) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. “Cross-Coupling Reactions using Samarium(II) Iodide,” Chem. Rev. 2014, 114, 5959-6039.

30) Szostak, M.; Spain, M.; Procter, D. J. “Determination of the Effective Redox Potentials of SmI2, SmBr2, SmCl2 and their Complexes with Water by Reduction of Aromatic Hydrocarbons. Reduction of Anthracene (-E1/2 = 1.98 V) and Stilbene (-E1/2 = 2.21 V) by Samarium(II) Iodide–Water Complex,” J. Org. Chem. 2014, 79, 2522-2537.

29) Szostak, M.; Spain, M.; Procter, D. J. “On the Role of Pre- and Post-Electron Transfer Steps in the SmI2/H2O/Amine-Mediated Reduction of Esters: New Mechanistic Insights and Kinetic Studies,” Chem. Eur. J. 2014, 20, 4222-4226.

28) Szostak, M.; Sautier, B.; Spain, M.; Procter, D. J. “Electron Transfer Reduction of Nitriles using SmI2–Et3N–H2O: Synthetic Utility and Mechanism,” Org. Lett. 2014, 16, 1092-1095.

27) Szostak, M.; Sautier, B.; Procter, D. J. “Structural Analysis and Reactivity of Unusual Tetrahedral Intermediates Enabled by SmI2-Mediated Reduction of Barbituric Acids: Vinylogous N-Acyliminium Additions to a-Alkoxy-N-Acyl-Carbamides,” Chem. Commun. 2014, 50, 2518-2521.

26) Szostak, M.; Sautier, B.; Procter, D. J. “Stereoselective Capture of N-Acyliminium Ions Generated from a-Hydroxy-N-Acyl-Carbamides: Direct Synthesis of Uracils from Barbituric Acids Enabled by SmI2 Reduction,” Org. Lett. 2014, 16, 452-455.

25) Szostak, M.; Spain, M.; Choquette, K. A.; Flowers, R. A., II; Procter, D. J. “Substrate-Directable Electron Transfer Reactions. Dramatic Rate Enhancement in the Chemoselective Reduction of Cyclic Esters using SmI2–H2O: Mechanism, Scope and Synthetic Utility,” J. Am. Chem. Soc. 2013, 135, 15702-15705. (Highlighted in Synform 2014/02).

24) Szostak, M.; Sautier, B.; Spain, M.; Behlendorf, M.; Procter, D. J. “Selective Reduction of Barbituric Acids using SmI2–H2O: Synthesis, Reactivity and Structural Analysis of Tetrahedral Adducts,” Angew. Chem. Int. Ed. 2013, 52, 12559-12563. (Highlighted in Synfacts, 2014, 10, 189).

23) Szostak, M.; Spain, M.; Procter, D. J. “Non-Classical Lanthanide(II) Iodides: Uncovering the Importance of Proton Donors in TmI2-Promoted Electron Transfer. Facile C–N Bond Cleavage in Unactivated Amides,” Angew. Chem. Int. Ed. 2013, 52, 7237-7241. (Highlighted in Synfacts, 2013, 9, 1001).

22) Szostak, M.; Spain, M.; Procter, D. J. “Recent Advances in the Chemoselective Reduction of Functional Groups Mediated by Samarium(II) Iodide: a Single Electron Transfer Approach,” Chem. Soc. Rev. 2013, 42, 9155-9183.

21) Szostak, M.; Aubé, J. “Chemistry of Bridged Lactams and Related Heterocycles,” Chem. Rev. 2013, 113, 5701-5765.

20) Szostak, M.; Procter, D. J. “Beyond Samarium Diiodide: Vistas in Reductive Chemistry Mediated by Lanthanides(II),” Angew. Chem. Int. Ed. 2012, 51, 9238-9256.

19) Szostak, M.; Spain, M.; Procter, D. J. “Selective Synthesis of 3-Hydroxy Acids from Meldrum’s Acids Using SmI2–H2O,” Nat. Protoc. 2012, 7, 970-977.

18) Szostak, M.; Spain, M.; Procter, D. J. “Preparation of Samarium(II) Iodide: Quantitative Evaluation of the Effect of Water, Oxygen, and Peroxide Content, Preparative Methods, and the Activation of Samarium Metal,” J. Org. Chem. 2012, 77, 3049-3059. (Featured Article).

17) Szostak, M.; Spain, M.; Procter, D. J. “Electron Transfer Reduction of Carboxylic Acids Using SmI2–H2O–Et3N,” Org. Lett. 2012, 14, 840-843. (Highlighted in Synfacts, 2012, 8, 436).

16) Szostak, M.; Collins, K. D.; Fazakerley, N. J.; Spain, M.; Procter, D. J. “A General Electron Transfer Reduction of Lactones Using SmI2–H2O,” Org. Biomol. Chem. 2012, 10, 5820-5824. (10th Anniversary Issue).

15) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. “Selective Reductive Transformations Using Samarium Diiodide-Water,” Chem. Commun. 2012, 48, 330-346.

14) Szostak, M.; Procter, D. J. “Concise Syntheses of Strychnine and Englerin A: the Power of Reductive Cyclizations Triggered by Samarium Iodide,” Angew. Chem. Int. Ed. 2011, 50, 7737-7739.

13) Szostak, M.; Spain, M.; Procter, D. J. “Electron Transfer Reduction of Unactivated Esters Using SmI2–H2O,” Chem. Commun. 2011, 47, 10254-10256.

12) Szostak, M.; Aubé, J. “Medium-Bridged Lactams: a New Class of Non-Planar Amides,” Org. Biomol. Chem. 2011, 9, 27-35.

11) Szostak, M.; Yao, L.; Day, V. W.; Powell, D. R.; Aubé, J. “Structural Characterization of N-Protonated Amides: Regioselective N-Activation of Medium-Bridged Twisted Lactams,” J. Am. Chem. Soc. 2010, 132, 8836-8837.

10) Szostak, M.; Aubé, J. “Synthesis, Structural Analysis, and Reactivity of Bridged Orthoamides by Intramolecular Schmidt Reaction,” J. Am. Chem. Soc. 2010, 132, 2530-2531.

9) Szostak, M.; Yao, L.; Aubé, J. “Proximity Effects in Nucleophilic Addition Reactions to Medium-Bridged Twisted Lactams: Remarkably Stable Tetrahedral Intermediates,” J. Am. Chem. Soc. 2010, 132, 2078-2084.

8) Szostak, M.; Yao, L.; Aubé, J. “Synthesis of Medium-Bridged Twisted Lactams via Cation–π Control of the Regiochemistry of the Intramolecular Schmidt Reaction,” J. Org. Chem. 2010, 75, 1235-1243.

7) Szostak, M.; Aubé, J. “Synthesis and Rearrangement of a Bridged Thioamide,” Chem. Commun. 2009, 7122-7124.

6) Szostak, M.; Aubé, J. “Corey–Chaykovsky Epoxidation of Twisted Amides: Synthesis and Reactivity of Bridged Spiro-Epoxyamines,” J. Am. Chem. Soc. 2009, 131, 13246-13247.

5) Szostak, M.; Yao, L.; Aubé, J. “Cation–n Control of Regiochemistry of Intramolecular Schmidt Reactions en Route to Bridged Bicyclic Lactams,” Org. Lett. 2009, 11, 4386-4389.

4) Szostak, M.; Aubé, J. “Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy,” Org. Lett. 2009, 11, 3878-3881.

3) Szostak, M.; Yao, L.; Aubé, J. “Stability of Medium-Bridged Twisted Amides in Aqueous Solutions,” J. Org. Chem. 2009, 74, 1869-1875.

2) Wu, W.; Sil, D.; Szostak, M. L.; Malladi, S. S.; Warshakoon, H. J.; Kimbrell, M. R.; Cromer, J. R.; David, S. A. “Structure-Activity Relationships of Lipopolysaccharide Sequestration in Guanylhydrazone-Bearing Lipopolyamines,” Bioorg. Med. Chem. 2009, 17, 709-715.

1) Ryng, S.; Szostak, M. “Studies on the Deamination of the Ethyl Ester of 5-Amino-3-methylisoxazole-4-carboxylic Acid,” Pol. J. Chem. 2009, 83, 887-893.

Advertisements