Complete List of Published Work in My Bibliography:
Angewandte Chemie Author Profile:
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201902312
2023
251) Gao, P.; Xu, J.; Zhou, T.; Liu, Y.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Zhang, D.; Szostak, M. “Activation of Aryl Halides at Gold(I) by N-Heterocyclic Carbenes: L-Shaped Heterobidentate ImPy (Imidazo[1,5-a]pyridin-ylidene) N,C Ligands for Oxidant-Free Au(I)/Au(III) Catalysis,” Angew. Chem. Int. Ed. 2023, 62, e202218427, doi: 10.1002/anie.202218427.
250) Yang, S.; Yu, X.; Szostak, M. “Divergent Acyl and Decarbonylative Liebeskind−Srogl Cross-Coupling of Thioesters by Cu-Cofactor and Pd–NHC (NHC = N-Heterocyclic Carbene) Catalysis,” ACS Catal. 2023, 13, doi: 10.1021/acscatal.2c05550.
249) Yang, S.; Zhou, T.; Yu, X.; Szostak, M. “Ag–NHC Complexes in the π-Activation of Alkynes,” Molecules 2023, 28, 950. (Special Issue: Featured Reviews in Organometallic Chemistry; open access: https://doi.org/10.3390/molecules28030950)
248) Bisz, E.; Podchorodecka, P.; Li, H.; Ochedzan-Siodlak, W.; Jie, A.; Szostak, M. “Sequential Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides/Chemoselective Amide Reduction and Reductive Deuteration to Benzylic Alcohols,” Molecules 2023, 28, 223. (Special Issue: Metal-Induced Molecule Activation and Coupling Reactions; open access: https://doi.org/10.3390/molecules28010223)
247) Liu, S.; Liang, J.; Zhang, P.; Li, Z.; Jiao, L. Y.; Jia, W.; Ma, Y. Szostak, M. “Ruthenium-Catalyzed Divergent Deaminative and Denitrative C–N Cleavages: Facile Access to Quinoxalines,” Org. Chem. Front. 2023, 10, 22-29.
246) Gao, P.; Rahman, P.; Zamalloa, A.; Feliciano, J.; Szostak, M. “Classes of Amides that Undergo Selective N–C Amide Bond Activation: The Emergence of Ground-State Destabilization,” J. Org. Chem. 2023, 88, DOI: 10.1021/acs.joc.2c01094. (Featured as the Front Cover).
2022
245) Yang. S.; Yu, X.; Poater, A.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P.; Szostak, M. “Buchwald–Hartwig Amination and C–S/S–H Metathesis of Aryl Sulfides by Selective C–S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl]2 Precatalysts: Unified Mechanism for Activation of Inert C–S Bonds,” Org. Lett. 2022, 24, 9210-9215.
244) Kardela, M.; Halikowska-Tarasek, K.; Szostak, M.; Bisz, E. “Enhanced Activity of Bulky N-Heterocylic Carbenes in Nickel–NHC Catalyzed Kumada–Corriu Cross-Coupling of Aryl Tosylates,” Catl. Sci. Technol. 2022, 12, 7275-7280.
243) Zhang, J.; Li, X.; Li, T.; Zhang, G.; Wan, K.; Ma, Y.; Fang. R.; Szostak, R.; Szostak, M. “Copper(I)–Thiazol-2-ylidenes: Highly Reactive N-Heterocyclic Carbenes for the Hydroboration of Terminal and Internal Alkynes. Ligand Development, Synthetic Utility, and Mechanistic Studies,” ACS Catal. 2022, 12, 15323-15333.
242) Chu, W.; Zhou, T.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. “CAAC–IPr*: Easily Accessible, Highly Sterically-Hindered Cyclic (Alkyl)(Amino)Carbenes,” Chem. Commun. 2022, 58, 13467-13470.
241) Zhang, J.; Liu, J.; Wang, X.; Yang, X.; Ma, Y.; Fang, R.; Zhao, Q.; Szostak, M. “Ruthenium-Catalyzed C–F Bond Arylation of Polyfluoroarenes: Polyfluorinated Biaryls by Integrated C–F/C–H Functionalization,” ACS Catal. 2022, 12, 14337-14346.
240) Yang, S.; Li, H.; Yu, X.; An, J.; Szostak, M. “Suzuki–Miyaura Cross-Coupling of Aryl Fluorosulfonates Mediated by Air- and Moisture-stable [Pd(NHC)(μ-Cl)Cl]2 Precatalysts: Broad Platform for C–O Cross-Coupling of Stable Phenolic Electrophiles,” J. Org. Chem. 2022, 87, 15250-15260.
239) Zhou, T.; Gao, P.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. “Well-Defined, Air- and Moisture-Stable Palladium–Imidazo[1,5-a]pyridin-3-ylidene Complexes: A Versatile Catalyst Platform for Cross-Coupling Reactions by L-Shaped NHC Ligands,” Catl. Sci. Technol. 2022, 12, 6581-6589.
238) Lei, P.; Wang, Y.; Zhang, C.; Hu, Y.; Feng, J.; Ma, Z.; Liu, X.; Szostak, R.; Szostak, M. “Sonogashira Cross-Coupling of Aryl Ammonium Salts by Selective C–N Activation Catalyzed by Air- and Moisture-Stable, Highly Active [Pd(NHC)(3-CF3-An)Cl2] (An = Aniline) Precatalysts,” Org. Lett. 2022, 24, 6310-6315.
237) Rahman, M.; Zhao, Q.; Meng, G.; Szostak, R.; Szostak, M. “[Ni(Np#)(η5-Cp)Cl]: Flexible, Sterically Bulky, Well-Defined, Highly Reactive Complex for Nickel-Catalyzed Cross-Coupling,” Organometallics 2022, 41, 2597-2604.
236) Tomasini, M.; Zhang, J.; Zhao, H.; Besalu, E.; Falivene, L.; Caporaso, L.; Szostak, M.; Poater, A. “A Predictive Journey Towards Trans-Thioamides/Amides,” Chem. Commun. 2022, 58, 9950-9953.
235) Rahman, M.; Zhang, J.; Zhao, Q.; Feliciano, J.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. “Pd−PEPPSI N-Heterocyclic Carbene Complexes from Caffeine: Application in Suzuki, Heck, and Sonogashira Reactions,” Organometallics 2022, 41, 2281-2290.
234) Zhao, Q.; Li, G.; Nareddy, P.; Jordan, F.; Lalancette, R.; Szostak, R.; Szostak, M. “Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N−C(X) Resonance,” Angew. Chem. Int. Ed. 2022, 61, e202207346.
233) Zhang, J.; Li, T.; Li, X.; Zhang, G.; Fang, S.; Yan, W.; Li, X.; Yang, X.; Ma, Y.; Szostak, M. “An Air-Stable, Well-Defined Palladium–BIAN–NHC Chloro Dimer: A Fast-Activating, Highly Efficient Catalyst For Cross-Coupling,” Chem. Commun. 2022, 58, 7404-7407.
232) Zhang, J.; Li, T.; Li, X.; Lv, A.; Li, X.; Wang, Z.; Wang, R.; Ma, Y.; Fang, R.; Szostak, R.; Szostak, M. “Thiazol-2-ylidenes as N-Heterocyclic Carbene Ligands with Enhanced Electrophilicity for Transition Metal Catalysis,” Comm. Chem. 2022, 5, no. 60, DOI: 10.1038/s42004-022-00675-7. (Open Access)
231) Zhang, J.; Wang, Y.; Zhang, Y.; Liu, T.; Fang, S.; Wang, R.; Ma, Y.; Fang, R.; Szostak, R.; Szostak, M. “Application of Indazolin-3-ylidenes in Catalysis: Steric Tuning of Nonclassical Formally Normal N-Heterocyclic Carbenes with Dual Electronic Character for Catalysis,” Organometallics 2022, 41, 1115–1124. (Featured as the Front Cover).
230) Zhang, J.; Li, T.; Wang, X.; Ma, Y.; Szostak, M. “Modern Homologation Reactions of Sulfoxonium Ylides via C–H Activation,” Chapter 9, In Homologation Reactions, Pace, V. Ed. Wiley, 2022.
229) Gao, P.; Meng, G.; Hammadi, B.; Szostak, M. “C–H Functionalization Using Carboxylic Acids and Carboxylic Acid Derivatives as Electrophiles under Redox-Neutral Conditions,” Vol. 14, Chapter 180, In Handbook of C–H Functionalization, Maiti, D. Ed. Wiley, 2022.
228) Zhang, J.; Zhao, H.; Li, G.; Zhu, X.; Shang, L.; He, Y.; Liu, X.; Ma, Y.; Szostak, M. “Transamidation of Thioamides with Nucleophilic Amines: Thioamide N–C(S) Activation by Ground-State-Destabilization,” Org. Biomol. Chem. 2022, 20, 5981-5988. (Special Issue: New Talent)
227) Zuo, D.; Wang, Q.; Liu, L.; Huang, T.; Szostak, M.; Chen, T. “Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N–C(O) Activation via Amide-to-Acyl Iodide Re-Routing,” Angew. Chem. Int. Ed. 2022, 61, e202202794. (Top Most Accessed Article in April 2022)
226) Zhang, J.; Rahman, M.; Zhao, Q.; Feliciano, J.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. “N–Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes,” Organometallics 2022, 41, 1806-1815. (Special Issue: Sustainable Chemistry)
225) Zhang, J.; Zhang, P.; Ma, Y.; Szostak, M. “Mechanochemical Synthesis of Ketones via Chemoselective Suzuki–Miyaura Cross-Coupling of Acyl Chlorides,” Org. Lett. 2022, 24, 2338-2343.
224) Szostak, M.; Zhou, T.; Shiyi, Y. “Substituted N-Heterocyclic Carbene (NHC) Ligands, Catalyst Complexes Thereof, and Methods Using Same,” U.S. 63/318,481, Mar 10, 2022.
223) Szostak, M.; Gao, P. “Heterobidentate N-Heterocyclic Carbene (NHC) Ligands, Catalyst Complexes Thereof, and Methods Using Same,” U.S. 63/292,235, Dec 21, 2021.
222) Cervantes-Reyes, A.; Smith, A. C.; Chinigo, G. M.; Blakemore, D. C.; Szostak, M. “Decarbonylative Pd-Catalyzed Suzuki Cross-Coupling for the Synthesis of Structurally Diverse Heterobiaryls,” Org. Lett. 2022, 24, 1678-1683.
221) Bera, S. S.; Szostak, M. “Cobalt–N-Heterocyclic Carbene Complexes in Catalysis,” ACS Catal. 2022, 12, 3111-3137.
220) Li, G.; Xing, Y.; Zhao, H.; Zhang, J.; Hong, X.; Szostak, M. “Chemoselective Transamidation of Thioamides by Transition-Metal-Free N–C(S) Transacylation,” Angew. Chem. Int. Ed. 2022, 61, e202200144.
219) Wang, C. A.; Rahman, M.; Bisz, E.; Dziuk, B.; R; Szostak, R.; Szostak, M. “Palladium-NHC (NHC = N–heterocyclic Carbene)-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkyl Amides,” ACS Catal. 2022, 12, 2426-2433.
218) Zhang, Y.; Szostak, M. “Synthesis of Natural Products by C–H Functionalization of Heterocycles,” Chem. Eur. J. 2022, 28, e202104278.
217) Zhang, J.; Zhang, P.; Shao, L.; Wang, R.; Ma, Y.; Szostak, M. “Mechanochemical Solvent-Free Suzuki–Miyaura Cross-Coupling of Amides via Highly Chemoselective N–C Cleavage,” Angew. Chem. Int. Ed. 2022, 61, e202114146.
216) Liu, C.; Szostak, M. “Decarbonylative Sonogashira Cross-Coupling: Fruitful Marriage of Alkynes with Carboxylic Acid Electrophiles,” Org. Chem. Front. 2022, 9, 216-222.
215) Li, D. H.; Lan, X. B.; Song, A. X.; Rahman, M.; Xu, C.; Huang, F. D.; Szostak, R.; Szostak, M.; Liu, F. S. “Buchwald-Hartwig Amination of Coordinating Heterocycles Enabled by Large-but-Flexible Pd–BIAN–NHC Catalysts,” Chem. Eur. J. 2022, 28, e202103341.
2021
214) Lei, P.; Wang, Y.; Mu, Y.; Wang, Y.; Ma, Z.; Feng, J.; Liu, X.; Szostak, M. “Green-Solvent Selection for Acyl Buchwald–Hartwig Cross-Coupling of Amides (Transamidation),” ACS Sustainable Chem. Eng. 2021, 9, 14937-14945.
213) Zhang, W.; Bie, F.; Ma, J.; Zhou, F.; Szostak, M.; Liu, C. “Palladium-Catalyzed Decarbonylative Borylation of Aryl Anhydrides,” J. Org. Chem. 2021, 86, 17445-17452.
212) Xia, Q.; Shi, S.; Gao, P.; Lalancette, R.; Szostak, R.; Szostak, M. “[(NHC)PdCl2(Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions,” J. Org. Chem. 2021, 86, 15648-15657.
211) Liu, C.; Szostak, M. “Forging C–S Bonds Through Decarbonylation,” ChemCatChem 2021, 13, 4878-4881. (Hot Topic: C-C Coupling)
210) Bie, F.; Liu, X.; Cao, H.; Shi, Y.; Zhou, T.; Szostak, M.; Liu, C. “Pd-Catalyzed Double-Decarbonylative Aryl Sulfide Synthesis through Aryl Exchange between Amides and Thioesters,” Org. Lett. 2021, 23, 8098-8103.
209) Durand, C.; Szostak, M. “Recent Advances in the Synthesis of Piperazines: Focus on C–H Functionalization,” Organics 2021, 2, 337-347. (Special Issue: Featured Papers; open access: https://doi.org/10.3390/org2040018)
208) Bisz, E.; Koston, M.; Szostak, M. “N-Butylpyrrolidone (NBP) as a Non-Toxic Substitute for NMP in Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorides,” Green Chem. 2021, 23, 7515-7521. (Selected as a Hot Article).
207) Meng, G.; Zhang, J.; Szostak, M. “Acyclic Twisted Amides,” Chem. Rev. 2021, 121, 12746-12783.
206) Zhao, Q.; Meng, G.; Li, G.; Flach, C.; Mendelsohn, R.; Lalancette, R.; Szostak, R.; Szostak, M. “IPr# – Highly Hindered, Broadly Applicable N-Heterocyclic Carbenes,” Chem. Sci. 2021, 12, 10583-10589.
205) Rahman, M.; Pyle, D. J.; Bisz, E.; Dziuk, B.; Ejsmont, K.; Lalancette, R.; Wang, Q.; Chen, H.; Szostak, R.; Szostak, M. “Evaluation of Cyclic Amides as Activating Groups in N–C Bond Cross-Coupling: Discovery of N–Acyl-d-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions,” J. Org. Chem. 2021, 86, 10455-10466.
204) Cao, H.; Liu, X.; Bie, F.; Shi, Y.; Han, Y.; Yan, P.; Szostak, M.; Liu, C. “Rh(I)-Catalyzed Intramolecular Decarbonylation of Thioesters,” J. Org. Chem. 2021, 86, 10829-10837.
203) Liu, C.; Szostak, M. “Decarbonylative Sulfide Synthesis from Carboxylic Acids and Thioesters via Cross-Over C–S Activation and Acyl Capture,” Org. Chem. Front. 2021, 8, 4805-4813.
202) Rahman, M.; Szostak, M. “Synthesis of Sulfoxonium Ylides from Amides by Selective N–C(O) Activation,” Org. Lett. 2021, 23, 4818-4822.
201) Liu, C.; Szostak, M. “Decarbonylative Sonogashira Cross-Coupling of Carboxylic Acids,” Org. Lett. 2021, 23, 4726-4730.
200) Li, H.; Peng, M,; Lai, Z,; Ning, L.; Chen, X.; Zhang, X.; Wang, P.; Szostak, R.; Szostak, M.; An, J. “Acyl Fluorides as Direct Precursors to Fluoride Ketyl Radicals: Reductive Deuteration Using SmI2 and D2O,” Chem. Commun. 2021, 57, 5195-5198.
199) Urbina, K.; Tresp, D.; Sips, K.; Szostak, M. “Recent Advances in Metal-Catalyzed Functionalization of Indoles,” Adv. Synth. Catal. 2021, 363, 2723-2739.
198) Mughal; H.; Szostak, M. “Recent Advances in the Synthesis and Reactivity of Azetidines: Strain-Driven Character of the Four-Membered Heterocycle,” Org. Biomol. Chem. 2021, 19, 3274-3286.
197) Yang; S.; Zhou, T.; Poater, A.; Cavallo, L.; Nolan, S. P.; Szostak, M. “Suzuki–Miyaura Cross-Coupling of Esters by Selective O–C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(µ-Cl)Cl]2 Precatalysts: Catalyst Evaluation and Mechanism,” Catl. Sci. Technol. 2021, 11, 3189-3197.
196) Shi, Y.; Liu, X.; Cao, H.; Bie, F.; Han, Y.; Yan, P.; Szostak, R.; Szostak, M.; Liu, C. “Conversion of Esters to Thioesters under Mild Conditions,” Org. Biomol. Chem. 2021, 19, 2991-2996.
195) Szostak, M.; Rahman, M. “Sterically Hindered N-Aliphatic N-Heterocylic Carbene Catalysts and Methods Using Same,” U.S. 63/155,492, Mar 2, 2021.
194) Szostak, M.; Zhao, Q. “Unsymmetrical N-Heterocyclic Carbene Catalysis and Methods Using Same,” U.S. 63/154,948, Mar 1, 2021.
193) Liu, C.; Ji, C. L.; Zhou, T.; Hong, X.; Szostak, M. “Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C–O/C–H Coupling,” Angew. Chem. Int. Ed. 2021, 60, 10690-10699. (Selected as a VIP paper)
192) Nan, J.; Zhang, J.; Hu, Y.; Wang, C.; Wang, T.; Wang, W.; Ma, Y.; Szostak, M. “CuII-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C–C and C–H Bond Cleavages,” Org. Lett. 2021, 23, 1928-1933.
191) Cao, H.; Liu, X.; Bie, F.; Shi, Y.; Han, Y.; Yan, P.; Szostak, M.; Liu, C. “General and Practical Intramolecular Decarbonylative Coupling of Thioesters via Palladium Catalysis,” Org. Chem. Front. 2021, 8, 1587-1592.
190) Ning, L.; Li, H.; Lai, Z.; Szostak, M.; Chen, X.; Dong, Y.; Jin, S.; An, J. “Synthesis of a-Deuterated Primary Amines via Reductive Deuteration of Oximes Using D2O as a Deuterium Source,” J. Org. Chem. 2021, 86, 2907-2916.
189) Buchspies; J.; Rahman, M.; Szostak, M. “Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes,” Molecules 2021, 26, 188. (Special Issue: Advances in Organometallic Chemistry, Papers of the Editorial Board Members; open access: https://doi.org/10.3390/molecules26010188)
188) Lei, P.; Mu, Y.; Wang, Y.; Wang, Y.; Ma, Z.; Feng, J.; Liu, X.; Szostak, M. “Green Solvent Selection for Suzuki–Miyaura Coupling of Amides,” ACS Sustainable Chem. Eng. 2021, 9, 552-559.
187) Chen, P.; Nan, J.; Hu, J.; Kang, Y.; Wang, B.; Ma, Y.; Szostak, M. “Metal-Free Tandem Carbene N–H Insertions and C–C Bond Cleavages,” Chem. Sci. 2021, 12, 803-811.
186) Piontek, A.; Ochedzan-Siodlak, W.; Bisz; E.; Szostak, M. “Cobalt–NHC Catalyzed C(sp2)–C(sp3) and C(sp2)–C(sp2) Kumada Cross-Coupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents,” ChemCatChem 2021, 13, 202-206.
185) Lei, P.; Li, G.; Ling, Y.; An, J.; Nolan, S. P.; Szostak, M. “Protocol for Palladium/NHC (NHC = N-Heterocyclic Carbene)-Catalyzed Suzuki-Miyaura Cross- Coupling of Amides by N–C(O) Activation,” Synthesis 2021, 53, 682-687. (Practical Synthetic Procedure; Selected as Front Cover).
184) Luo, S.; Weng, C.; Ding, Y.; Ling, C.; Szostak, M.; Ma, X.; An, J. “Reductive Deuteration of Aromatic Esters for the Synthesis of a,a-Dideuterio Benzyl Alcohols Using D2O as Deuterium Source,” Synthesis 2021, 53, 51-56.
183) Chen, C.; Liu, F. S.; Szostak, M. “BIAN–NHC Ligands in Transition-Metal-Catalysis: A Perfect Union of Sterically-Encumbered, Electronically-Tunable N–Heterocyclic Carbenes?,” Chem. Eur. J. 2021, 27, 4478-4499.
2020
182) Zhang, J.; Liu, Z.; Yin, Z.; Yang, X.; Ma, Y.; Szostak, R.; Szostak, M. “Preference of cis-Thioamide Structure in N-Thioacyl-N-methylanilines,” Org. Lett. 2020, 22, 9500-9505.
181) Bie, F.; Liu, X.; Shi, Y.; Cao, H.; Han, Y.; Szostak, M.; Liu, C. “Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides,” J. Org. Chem. 2020, 85, 15676-15685.
180) Li, G.; Ma, S.; Szostak, M. “Amide Bond Activation: The Power of Resonance,” Trends Chem. 2020, 2, 914-928.
179) Zhang, J.; Liu, Y.; Jia, Q.; Wang, Y.; Ma, Y.; Szostak, M. “Ruthenium(II)-Catalyzed C–H Arylation of N,N-Dialkyl Thiobenzamides with Boronic Acids by Sulfur Coordination in 2-MeTHF,” Org. Lett. 2020, 22, 6884-6890.
178) Zhou, T.; Xie, P. P.; Ji, C. L.; Hong, X.; Szostak, M. “Decarbonylative Suzuki–Miyaura Cross-Coupling of Aroyl Chlorides,” Org. Lett. 2020, 22, 6434-6440.
177) Zhou, T.; Szostak, M. “Palladium-Catalyzed Cross-Couplings by C–O Bond Activation,” Catl. Sci. Technol. 2020, 10, 5702-5739. (Invited Review).
176) Ielo, L.; Pace, V.; Holzer, W.; Rahman, M.; Meng, G.; Szostak, R.; Szostak, M. “Electrophilicity Scale of Activated Amides: 17O NMR and 15N NMR Chemical Shifts of Acyclic Twisted Amides in N–C(O) Cross-Coupling,” Chem. Eur. J. 2020, 26, 16246-16250.
175) Zhou, T.; Ma, S.; Nahra, F.; Obled, A. M. C.; Poater, A.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P.; Szostak, M. “[Pd(NHC)(m-Cl)Cl]2: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products,” iScience 2020, 23, 101377 (Open-access: DOI: 10.1016/j.isci.2020.101377).
174) Gao, P.; Szostak, M. “Highly Selective and Divergent Acyl and Aryl Cross-Couplings of Amides via Ir-Catalyzed C–H Borylation/N–C(O) Activation,” Org. Lett. 2020, 22, 6010-6015.
Szostak, M. “Editorial for ‘Organometallic Chemistry’ Section,” Editor-in-Chief of Organometallic Chemistry Section, Molecules 2020, 25, 3038. (Open access: https://www.mdpi.com/1420-3049/25/13/3038).
173) Wang, X.; Zhang, J.; He, Y.; Chen, D.; Wang, C.; Yang, F.; Wang, W.; Ma, Y.; Szostak, M. “Ruthenium(II)-Catalyzed Ortho-C–H Alkylation of Naphthylamines with Diazo Compounds for Synthesis of 2,2-Disubstituted π–Extended 3–Oxindoles in Water,” Org. Lett. 2020, 22, 5187-5192.
172) Buchspies, J.; Rahman, M.; Szostak, R.; Szostak, M. “N-Acylcarbazoles and N-Acylindoles: Electronically Activated Amides for N–C(O) Cross-Coupling by Nlp to Ar Conjugation Switch,” Org. Lett. 2020, 22, 4703-4709.
171) Li, G.; Szostak, M. “Synthesis of Biaryl Ketones by Arylation of Weinreb Amides with Functionalized Grignard Reagents under Thermodynamic Control vs. Kinetic Control of N,N-Boc2-Amides,” Org. Biomol. Chem. 2020, 18, 3827-3831.
170) Wang, C. A.; Liu, C.; Szostak, M. “N-Acyl-5,5-Dimethylhydantoins: Mild Acyl-Transfer Reagents for the Synthesis of Ketones Using Pd-PEPPSI or Pd/Phosphine Catalysts,” Org. Process Res. Dev. 2020, 24, 1043-1051.
169) Li, G.; Szostak, M. “Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage,” Synthesis 2020, 52, 2579-2599.
168) Ma, S.; Zhou, T.; Li, G.; Szostak, M. “Suzuki-Miyaura Cross-Coupling of Amides using Well-Defined, Air-Stable [(PR3)2Pd(II)X2] Precatalysts,” Adv. Synth. Catal. 2020, 362, 1887-1892.
167) Rahman, M.; Liu, C.; Bisz, E.; Dziuk, B.; Lalancette, R.; Wang, Q.; Chen, H.; Szostak, R.; Szostak, M. “N-Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling,” J. Org. Chem. 2020, 85, 5475-5485. (Selected as ACS Editors’ Choice: Open-access: https://pubs.acs.org/doi/10.1021/acs.joc.0c00227)
166) Buchspies; J.; Rahman, M.; Szostak, M. “Suzuki–Miyaura Cross-Coupling of Amides Using Well-Defined, Air- and Moisture-Stable Nickel/NHC (NHC = N-Heterocyclic Carbene) Complexes,” Catalysts 2020, 10, 372. (Special Issue: N-Heterocyclic Carbenes and Their Complexes in Catalysis; open access: https//doi.org/10.3390/catal10040372)
165) Li, G.; Szostak, M. “Synthesis of Amides by Transamidation and Amidation of Activated Amides and Esters,” Chapter 21.1.8. In Science of Synthesis, SOS Knowledge Updates, Volume 21; Three Carbon–Heteroatom Bonds: Amides and Derivatives; Peptides; Lactams; Petersson, E. J., Ed., Thieme, 2020. (Online access: https://www.thieme-connect.com/products/ebooks/lookinside/10.1055/sos-SD-121-00059)
164) Rahman, M.; Li, G.; Szostak, M. “Thioesterification and Selenoesterification of Amides via Selective N–C Cleavage at Room Temperature: N–C(O) to S/Se–C(O) Interconversion,” Synthesis 2020, 52, 1060-1066. (Selected as Front Cover, Submitted to Special Issue: Alkali Base Mediated Coupling Reactions without Added Transition Metal).
163) Szostak, M.; Shi, S. “Complexes of N-Heterocyclic Carbenes for Transition-Metal Catalysis,” U.S. 62/958,583, Jan 8, 2020.
162) Szostak, M.; Zhao, Q.; Meng, G.; Li, G. “Ligands for Transition-Metal Catalysis,” U.S. 62/958,565, Jan 8, 2020.
161) Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. “N-Heterocyclic Carbene Complexes in C–H Activation Reactions,” Chem. Rev. 2020, 120, 1981-2048.
160) Zhang, J.; Wang, X.; Chen, D.; Kang, Y.; Ma, Y.; Szostak, M. “Synthesis of C6-Substituted Isoquinolino[1,2-b]quinazolines via Rh(III)-Catalyzed C–H Annulation with Sulfoxonium Ylides,” J. Org. Chem. 2020, 85, 3192-3201.
159) Li, H.; Hou, Y.; Liu, C.; Lai, Z.; Ning, L.; Szostak, R.; Szostak, M.; An, J. “Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of a,a-Dideuterio Alcohols Using SmI2 and D2O as a Deuterium Source,” Org. Lett. 2020, 22, 1249-1253.
158) Bisz, E.; Szostak, M. “Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorobenzoates with Alkyl Grignard Reagents,” Molecules 2020, 25, 230. (Special Issue: Recent Advances in Iron Catalysis; Open access).
157) Li, G.; Zhou, T.; Poater, A.; Cavallo, L.; Nolan, S. P.; Szostak, M. “Buchwald-Hartwig Cross-Coupling of Amides (Transamidation) by Selective N–C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(allyl)Cl] Precatalysts: Catalyst Evaluation and Mechanism,” Catl. Sci. Technol. 2020, 10, 710-716.
156) Zhao, Q.; Lalancette, R; Szostak, R.; Szostak, M. “Ring-Opening Olefin Metathesis of Twisted Amides: Activation of Amide Bonds by C=C Cleavage,” ACS Catal. 2020, 10, 737-742. (Highlighted on http://allthingsmetathesis.com/asaps-2019-week-51-52).
155) Li, G.; Szostak, M. “Transition-Metal-Free Activation of Amides by N–C Bond Cleavage,” Chem. Rec. 2020, 20, 649-659. (Invited Review).
154) Li, G.; Szostak, M. “Kinetically-Controlled, Highly Chemoselective Acylation of Functionalized Grignard Reagents with Amides by N–C Cleavage,” Chem. Eur. J. 2020, 26, 611-615.
153) Chakraborty, J.; Nemeria, N. S.; Zhang, X.; Nareddy, P. R.; Szostak, M.; Farinas, E.; Jordan, F. “Engineering 2-Oxoglutarate Dehydrogenase to a 2-Oxo Aliphatic Dehydrogenase Complex by Optimizing Consecutive Components,” AlChE J. 2020, 66, e1676.
2019
152) Liu, C.; Ji, C. L.; Zhou, T.; Hong, X.; Szostak, M. “Decarbonylative Phosphorylation of Carboxylic Acids via Redox-Neutral Palladium Catalysis,” Org. Lett. 2019, 21, 9256-9261.
151) Zhang, J.; Zhuang, Y.; Ma, Y.; Yang, X.; Szostak, M. “Palladium-Catalyzed Synthesis of Benzothiophenes via Cross-Dehydrogenative Coupling of 4-Arylthiocoumarins and Pyrones,” Adv. Synth. Catal. 2019, 361, 5709-5714.
150) Lei, P.; Ling, Y.; An, J.; Nolan, S. P.; Szostak, M. “2-Methyltetrahydrofuran (2-MeTHF): A Green Solvent for Pd–NHC-Catalyzed Amide and Ester Suzuki–Miyaura Cross-Coupling by N–C/O–C Cleavage,” Adv. Synth. Catal. 2019, 361, 5654-5660.
149) Liu, C.; Lalancette, R.; Szostak, R.; Szostak, M. “Sterically Hindered Ketones via Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation,” Org. Lett. 2019, 21, 7976-7981.
148) Zhou, T.; Li, C. L.; Hong, X.; Szostak, M. “Palladium-Catalysed Decarbonylative Suzuki-Miyaura Cross-Coupling of Amides by Carbon-Nitrogen Activation,” Chem. Sci. 2019, 10, 9865-9871.
147) Rahman, M.; Li, G.; Szostak, M. “Metal-Free Transamidation of Secondary Amides by N–C Cleavage,” J. Org. Chem. 2019, 84, 12091-12100.
146) Wang, X.; Zhang, J.; Chen, D.; Wang, B.; Yang, X.; Ma, Y.; Szostak, M. “Rh(III)-Catalyzed C–H Amidation of 2-Arylindoles with Dioxazolones: A Route to Indolo[1,2-c]quinazolines,” Org. Lett. 2019, 21, 7038-7043.
145) Liu, C.; Ji, C. L.; Qin, Z. X.; Hong, X.; Szostak, M. “Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids,” iScience 2019, 9, 749-759, DOI: 10.1016/j.isci.2019.08.021. (Open access)
144) Bisz; E.; Kardela, M.; Szostak, M. “Ligand Effect on Iron-Catalyzed Cross-Coupling Reactions: Evaluation of Amides as O-Coordinating Ligands,” ChemCatChem 2019, 11, 5733-5737. (Special Issue on Sustainable Chemistry to Meet Future Challenges in the Pharmaceutical Industry), (Selected as a Hot Topic: C-C Coupling).
143) Zhao, Q.; Zhang, J.; Szostak, M. “Ruthenium(0)-Catalyzed Cross-Coupling of Anilines with Organoboranes by Selective Carbon–Nitrogen Cleavage,” ACS Catal. 2019, 9, 8171-8177.
142) Li, G.; Ji, C. L.; Hong, X.; Szostak, M. “Highly Chemoselective, Transition-Metal-Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N−C/O−C Cleavage,” J. Am. Chem. Soc. 2019, 141, 11161-11172.
141) Zhao, Q.; Zhang, J.; Szostak, M. “Ruthenium(0)-Sequential Catalysis for the Synthesis of Sterically Hindered Amines by C–H Arylation/Hydrosilylation,” Chem. Commun. 2019, 55, 9003-9006.
140) Liu, C.; Qin, Z. X.; Ji, C. L.; Hong, X.; Szostak, M. “Highly-Chemoselective Step-Down Reduction of Carboxylic Acids to Aromatic Hydrocarbons via Palladium Catalysis,” Chem. Sci. 2019, 10, 5736-5742.
139) Zhou, T.; Li, G.; Nolan, S. P.; Szostak, M. “[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald-Hartwig Cross-coupling (Transamidation) of Amides and Esters by N-C/O-C Activation,” Org. Lett. 2019, 21, 3304-3309.
138) Meng, G.; Patel, M.; Luo, F.; Li, Q.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. “Graphene Oxide Catalyzed Ketone a-Alkylation with Alkenes: Enhancement of Graphene Oxide Activity by Hydrogen Bonding,” Chem. Commun. 2019, 55, 5379-5382.
137) Zhao, Q.; Szostak, M. “Redox-Neutral Decarbonylative Cross-Couplings Coming of Age,” ChemSusChem 2019, 12, 2983-2987. (Selected as a Hot Topic: C-C Coupling).
136) De Oliveira Silva, A.; McQuade, J.; Szostak, M. “Recent Advances in the Synthesis and Reactivity of Isothiazoles,” Adv. Synth. Catal. 2019, 361, 3050-3067.
135) Pace, V.; Holzer, W.; Ielo, L.; Shi, S.; Meng, G.; Hanna, M.; Szostak, R.; Szostak, M. “17O NMR and 15N NMR Chemical Shifts of Sterically-Hindered Amides: Ground-State Destabilization in Amide Electrophilicity,” Chem. Commun. 2019, 55, 4423-4426.
134) Piontek, A.; Ochedzan-Siodlak, W.; Bisz, E.; Szostak, M. “Nickel-Catalyzed C(sp2)–C(sp3) Kumada Cross-Coupling of Aryl Tosylates with Alkyl Grignard Reagents,” Adv. Synth. Catal. 2019, 361, 2329-2336. (Selected as a Hot Topic: C-C Coupling).
133) Shi, S.; Szostak, M. “Decarbonylative Borylation of Amides by Palladium Catalysis,” ACS Omega 2019, 4, 4901-4907.
132) Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. “Triflamides: Highly Reactive, Electronically Activated N–Sulfonyl Amides in Catalytic N–C(O) Amide Cross-Coupling,” Org. Lett. 2019, 21, 1253-1257.
131) Bisz; E.; Kardela, M.; Piontek, A.; Szostak, M. “Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling at Low Catalyst Loading,” Catl. Sci. Technol. 2019, 9, 1092-1097.
130) Rahman, M.; Buchspies; J.; Szostak, M. “N-Acylphthalimides: Efficient Acyl Coupling Reagents in Suzuki–Miyaura Cross-Coupling by N–C Cleavage Catalyzed by Pd–PEPPSI Precatalysts,” Catalysts 2019, 9, 129. (Special Issue: Catalysts for Suzuki-Miyauua Coupling Reaction; Open access)
129) Szostak, R.; Szostak, M. “Chemistry of Bridged Lactams: Recent Developments,” Molecules 2019, 24, 274. (Special Issue: Amide Bond Activation, Open access)
128) Buchspies; J.; Szostak, M. “Recent Advances in Acyl Suzuki Cross-Coupling,” Catalysts 2019, 9, 53. (Invited Review, Open access)
127) Bisz; E.; Podchorodecka, P.; Szostak, M. “N-Methylcaprolactam as a Dipolar Aprotic Solvent for Iron-Catalyzed Cross-Coupling Reactions: Matching Efficiency with Safer Reaction Media,” ChemCatChem 2019, 11, 1196-1199. (Selected as a Hot Topic: C-C Coupling).
126) Bisz, E.; Szostak, M. “Iron-Catalyzed C(sp2)−C(sp3) Cross-Coupling of Chlorobenzenesulfonamides with Alkyl Grignard Reagents: Entry to Alkylated Aromatics,” J. Org. Chem. 2019, 84, 1640-1646.
125) Szostak, R.; Szostak, M. “Tröger’s Base Twisted Amides: High Amide Bond Twist and N/-O-Protonation Aptitude,” J. Org. Chem. 2019, 84, 1510-1516.
124) Meng, G.; Kakalis, L.; Nolan, S. P.; Szostak, M. “A Simple 1H NMR Method for Determining the σ-Donor Properties of N-Heterocyclic Carbenes,” Tetrahedron Lett. 2019, 60, 378-381.
123) Zhang, J.; Hou, Y.; Ma, Y.; Szostak, M. “Synthesis of Amides by Mild Palladium-Catalyzed Aminocarbonylation of Arylsilanes with Amines Enabled by Copper(II) Fluoride,” J. Org. Chem. 2019, 84, 338-345.
122) Bisz, E.; Szostak, M. “Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope and Application,” Adv. Synth. Catal. 2019, 361, 85-95. (Selected as a Hot Topic: C-C Coupling).
2018
121) Liu, C.; Shi, S.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. “The Most Twisted Acyclic Amides: Structures and Reactivity,” Org. Lett. 2018, 20, 7771-7774.
120) Buchspies, J.; Pyle, D. J.; He, H.; Szostak, M. “Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Pentafluorophenyl Esters,” Molecules 2018, 23, 3134. (Special Issue: Amide Bond Activation, Selected as a Feature Article, Open access)
119) Liu, C.; Ji, C. L.; Hong, X.; Szostak, M. “Palladium-Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation,” Angew. Chem. Int. Ed. 2018, 57, 16721-16726.
118) Szostak, R.; Liu, C.; Lalancette, R.; Szostak, M. “Twisted N-Acyl-hydantoins: Rotationally Inverted Urea-Imides of Relevance in N–C(O) Cross-Coupling,” J. Org. Chem. 2018, 83, 14676-14682.
117) Meng, G.; Szostak, M. “Palladium/NHC (NHC = N-Heterocyclic Carbene)-Catalyzed B-Alkyl Suzuki Cross-Coupling of Amides by Selective N–C Bond Cleavage,” Org. Lett. 2018, 20, 6789-6793.
116) Piontek, A.; Bisz, E.; Dziuk, B.; Szostak, R.; Szostak, M. “Structures and Energetic Properties of 4-Halobenzamides,” Acta Cryst. 2018, C74, 1395-1402.
115) Liu, C.; Szostak, M. “Decarbonylative Cross-Coupling of Amides,” Org. Biomol. Chem. 2018, 16, 7998-8010. (Invited Review).
114) Patel, M.; Savaram, K.; Li, Q.; Buchspies, J.; Ma, D.; Szostak, M.; He, H. “Carbon-Based Metal-Free Catalysts for Chemical Catalysis,” Chapter 9, In Carbon-Based Metal-Free Catalysts: Design and Applications, Dai, L. Ed. Wiley, 2018.
113) Shi, S.; Nolan, S. P.; Szostak, M. “Well-Defined Palladium(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalysts for Cross- Coupling Reactions of Amides and Esters by Selective Acyl CO–X (X = N, O) Cleavage,” Acc. Chem. Res. 2018, 51, 2589-2599.
112) Li, G.; Szostak, M. “Highly Selective Transition-Metal-Free Transamidation of Amides and Amidation of Esters at Room Temperature,” Nature Commun. 2018, 9, 4165. (Open Access).
111) Liu, C.; Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. “Acyl and Decarbonylative Suzuki Coupling of N-Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon−Nitrogen Bond Cleavage,” ACS Catal. 2018, 8, 9131-9139.
110) Li, G.; Lei, P.; Szostak, M. “Transition-Metal-Free Esterification of Amides via Selective N−C Cleavage under Mild Conditions,” Org. Lett. 2018, 20, 5622-5625. (Highlighted as Abstract) (Highlighted on Organic Chemistry Portal)
109) Zhang, X.; Jordan, F.; Szostak, M. “Transition-Metal-Catalyzed Decarbonylation of Carboxylic Acids to Olefins: Exploiting Acyl C–O Activation for the Production of High Value Products,” Org. Chem. Front. 2018, 5, 2515-2521. (Highlight Article).
108) Li, G.; Lei, P.; Szostak, M.; Casals-Cruañas, E.; Poater, A.; Cavallo, L.; Nolan, S. P. “Mechanistic Study of Suzuki–Miyaura Cross-Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts,” ChemCatChem 2018, 10, 3096-3106. (Selected as a Hot Topic: C-C Coupling).
107) Bisz, E.; Szostak, M. “2-Methyltetrahydrofuran: A Green Solvent for Iron-Catalyzed Cross-Coupling Reactions,” ChemSusChem 2018, 11, 1290-1294.
106) Piontek, A.; Bisz, E.; Szostak, M. “Iron-Catalyzed Cross-Coupling in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability,” Angew. Chem. Int. Ed. 2018, 57, 11116-11128. (Minireview, Selected as a Hot Topic: C-C Coupling).
105) Meng, G.; Szostak, M. “N-Acyl-Glutarimides: Privileged Scaffolds in Amide N-C Bond Cross-Coupling,” Eur. J. Org. Chem. 2018, 20-21, 2352-2365. (20th Anniversary Issue, Selected for Cover Profile, Selected as a Hot Topic: C-C Coupling).
104) Nemeria, N. S.; Gerfen, G.; Nareddy, P. R.; Yang, L.; Zhang, X.; Szostak, M.; Jordan, F. “The Mitochondrial 2-Oxoadipate and 2-Oxoglutarate Dehydrogenase Complexes Share Their E2 and E3 Components for Their Function and both Generate Reactive Oxygen Species,” Free Radic. Biol. Med. 2018, 115, 136-146.
103) Bisz, E.; Piontek, A. Dziuk, B.; Szostak, R.; Szostak, M. “Barriers to Rotation in ortho-Substituted Tertiary Aromatic Amides: Effect of Chloro-Substitution on Resonance and Distortion,” J. Org. Chem. 2018, 83, 3159-3163.
102) Szostak, R.; Szostak, M. “N‐Acyl-Glutarimides: Resonance and Proton Affinities of Rotationally-Inverted Twisted Amides Relevant to N−C(O) Cross-Coupling,” Org. Lett. 2018, 20,1342-1345.
101) Liu, C.; Szostak, M. “Decarbonylative Thioetherification by Nickel Catalysis using Air and Moisture-Stable Nickel Precatalysts,” Chem. Commun. 2018, 54, 2130-2133.
100) Li, G.; Shi, S.; Lei, P.; Szostak, M. “Pd-PEPPSI: Water-Assisted Suzuki–Miyaura Cross-Coupling of Aryl Esters at Room Temperature using a Practical Palladium-NHC (NHC = N-Heterocyclic Carbene) Precatalyst,” Adv. Synth. Catal. 2018, 360, 1538-1543.
99) Liu, Y.; Achtenhagen, M.; Liu, R.; Szostak, M. “Transamidation of N-Acyl-Glutarimides with Amines,” Org. Biomol. Chem. 2018, 16, 1322-1329.
98) Shi, S.; Szostak, M. “Zinc Cyanide,” e-EROS Encyclopedia of Reagents for Organic Synthesis 2018. http://onlinelibrary.wiley.com/book/10.1002/047084289X
97) Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. “Reversible Twisting of Primary Amides via Ground State N−C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides,” J. Am. Chem. Soc. 2018, 140, 727-734.
96) Nareddy, P.; Jordan, F.; Szostak, M. “Ruthenium(II)-Catalyzed Catalyzed Direct C–H Arylation of Indoles with Arylsilanes in Water,” Org. Lett. 2018, 20, 341-344.
2017
95) Piontek, A.; Szostak, M. “Iron-Catalyzed C(sp2)-C(sp3) Cross-Coupling of Alkyl Grignard Reagents with Polyaromatic Tosylates,” Eur. J. Org. Chem. 2017, 48, 7271-7276. (Selected as an Outstanding Organics Article, Rare Metal-Catalysis).
94) Lei, P.; Meng, G.; Ling, Y.; An, J.; Nolan, S. P.; Szostak, M. “General Method for the Suzuki-Miyaura Cross-Coupling of Primary Amide-Derived Electrophiles Enabled by [Pd(NHC)(cin)Cl] at Room Temperature,” Org. Lett. 2017, 19, 6510-6513. (Highlighted on Organic Chemistry Portal).
93) Shi, S.; Szostak, M. “Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide,” Molecules 2017, 22, 2018, page no. 1-22. (Invited Review). Open Access!
92) Bisz, E.; Szostak, M. “Cyclic Ureas (DMI, DMPU) as Efficient, Sustainable Ligands in Iron-Catalyzed C(sp2)–C(sp3) Coupling of Aryl Chlorides and Tosylates,” Green Chem. 2017, 19, 5361-5366.
91) Osumi, Y.; Liu, C.; Szostak, M. “N-Acylsuccinimides: Twist-Controlled, Acyl-Transfer Reagents in Suzuki-Miyaura Cross-Coupling by N–C Amide Bond Activation,” Org. Biomol. Chem. 2017, 15, 8867-8871. (Selected as a Hot Article).
90) Meng, G.; Szostak, M. “Site-Selective C−H/C−N Activation by Cooperative Catalysis: Primary Amides as Arylating Reagents in Directed C−H Arylation,” ACS Catal. 2017, 7, 7251-7256.
89) Shi, S.; Lei, P.; Szostak, M. “Pd–PEPPSI: A General Pd–NHC Precatalyst for Suzuki-Miyaura Cross-Coupling of Esters by C–O Cleavage,” Organometallics 2017, 36, 3784-3789.
88) Shi, S.; Szostak, M. “Pd–PEPPSI: A General Pd–NHC Precatalyst for Buchwald–Hartwig Cross-Coupling of Esters and Amides (Transamidation) under the Same Reaction Conditions,” Chem. Commun. 2017, 53, 10584-10587.
87) Bisz, E.; Szostak, M. “Iron-Catalyzed C O Bond Activation: Opportunity for Sustainable Catalysis,” ChemSusChem 2017, 10, 3964-3981. (Minireview Article.) (Selected as Front Cover, Selected for Cover Profile).
86) Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. “N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N–C(O) Cleavage,” Org. Lett. 2017, 19, 4656-4659.
85) Liu, C.; Szostak, M. “Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives,” Angew. Chem. Int. Ed. 2017, 56, 12718-12722. (Selected as a Hot Paper).
84) Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.; Szostak, M. “Suzuki–Miyaura Cross-Coupling of Amides and Esters at Room Temperature: Correlation with Barriers to Rotation around C–N and C–O Bonds,” Chem. Sci. 2017, 8, 6525-6530. (Highlighted in Synfacts, 2017, 13, 1189).
83) Nareddy, P.; Jordan, F.; Szostak, M. “Recent Developments in Ruthenium-Catalyzed C–H Arylation: Array of Mechanistic Manifolds,” ACS Catal. 2017, 7, 5721-5745.
82) Meng, G.; Szostak, R.; Szostak, M. “Suzuki−Miyaura Cross-Coupling of N-Acylpyrroles and Pyrazoles: Planar, Electronically Activated Amides in Catalytic N–C Cleavage,” Org. Lett. 2017, 19, 3596-3599. (Highlighted in Synfacts, 2017, 13, 0969).
81) Lei, P.; Meng, G.; Ling, Y.; An, J.; Szostak, M. “Pd-PEPPSI: Pd-NHC Precatalyst for Suzuki−Miyaura Cross-Coupling Reactions of Amides,” J. Org. Chem. 2017, 82, 6638-6646.
80) Huq, S. R.; Shi, S.; Diao, R.; Szostak, M. “Mechanistic Study of SmI2/H2O and SmI2/Amine/H2O‐Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals,” J. Org. Chem. 2017, 82, 6528-6540.
79) Nemeria, N. S.; Gerfen, G.; Guevara, E.; Nareddy, P. R.; Szostak, M.; Jordan, F. “The Human Krebs Cycle 2-Oxoglutarate Dehydrogenase Complex Creates an Additional Source of Superoxide/Hydrogen Peroxide from 2-Oxoadipate as Alternative Substrate,” Free Radic. Biol. Med. 2017, 108, 644-654.
78) Shi, S.; Szostak, M. “Nickel-Catalyzed Negishi Cross-Coupling of N-Acylsuccinimides: Stable, Amide-Based, Twist-Controlled Acyl-Transfer Reagents via N–C Activation,” Synthesis 2017, 49, 3602-3608. (Special Issue: Nickel Catalysis). (Selected as the Front Cover).
77) Szostak, R.; Meng, G.; Szostak, M. “”Resonance Destabilization in N-Acylanilines (Anilides): Electronically-Activated Planar Amides of Relevance in N–C(O) Cross-Coupling”,” J. Org. Chem. 2017, 82, 6373-6378.
76) Shi, S.; Szostak, M. “Decarbonylative Cyanation of Amides by Palladium Catalysis,” Org. Lett. 2017, 19, 3095-3098. (Highlighted in Synfacts, 2017, 13, 0851). (Highlighted on Organic Chemistry Portal).
75) Hu, F.; Nareddy, P.; Lalancette, R.; Jordan, F.; Szostak, M. “s N−C Bond Difunctionalization in Bridged Twisted Amides: Sew-and-Cut Activation Approach to Functionalized Isoquinolines,” Org. Lett. 2017, 19, 2386-2389.
74) Nareddy, P.; Jordan, F.; Szostak, M. “Ruthenium(II)-Catalyzed Ortho-C–H Arylation of Diverse N-Heterocycles with Aryl Silanes by Exploiting Solvent-Controlled N-Coordination,” Org. Biomol. Chem. 2017, 15, 4783-4788. (Selected as the Front Cover)
73) Meng, G.; Lei, P.; Szostak, M. “A General Method for Two-Step Transamidation of Secondary Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (N-Heterocyclic Carbene) Complexes,” Org. Lett. 2017, 19, 2158-2161.
72) Liu, Y.; Shi, S.; Achtenhagen, M.; Liu, R.; Szostak, M. “Metal-Free Transamidation of Secondary Amides via Selective N–C Cleavage under Mild Conditions,” Org. Lett. 2017, 19, 1614-1617. (Highlighted at In the Pipeline) (One of the most read papers in Organic Letters in April 2017)
71) Liu, C.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. “Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling of N-Mesyl Amides by N−C Cleavage: Electronic Effect of the Mesyl Group,” Org. Lett. 2017, 19, 1434-1437. (Highlighted in Synfacts, 2017, 13, 0521).
70) Nareddy, P.; Jordan, F.; Szostak, M. “Highly Chemoselective Ruthenium(II)-Catalyzed Direct Arylation of Cyclic and N,N-Dialkyl Benzamides with Aryl Silanes,” Chem. Sci. 2017, 8, 3204-3210. (Highlighted in Synfacts, 2017, 13, 0522).
69) Lei, P.; Meng, G.; Szostak, M. “General Method for the Suzuki-Miyaura Cross-Coupling of Amides Using Commercially Available, Air- and Moisture-Stable Palladium/NHC (NHC = N-Heterocyclic Carbene) Complexes,” ACS Catal. 2017, 7, 1960-1965.
68) Liu, Y.; Liu, R.; Szostak, M. “Sc(OTf)3-Catalyzed Synthesis of Anhydrides from Twisted Amides,” Org. Biomol. Chem. 2017, 15, 1780-1785.
67) Liu, C.; Szostak, M. “Twisted Amides: From Obscurity to Broadly Useful Transition- Metal Catalyzed Reactions by N–C Amide Bond Activation,” Chem. Eur. J. 2017, 23, 7157-7173. (Minireview Article).
2016
66) Liu, C.; Meng, G.; Szostak, M. “N-Acylsaccharins as Amide-Based Arylating Reagents via Chemoselective N–C Cleavage: Pd-Catalyzed Decarbonylative Heck Reaction,” J. Org. Chem. 2016, 81, 12023-12030.
65) Shi, S.; Szostak, M. “Nickel-Catalyzed Diaryl Ketone Synthesis by N–C Cleavage: Direct Negishi Cross-Coupling of Primary Amides by Site- Selective N,N-Di-Boc Activation,” Org. Lett. 2016, 18, 5872-5875. (Highlighted in Synfacts, 2017, 13, 0083).
64) Meng, G.; Shi, S.; Szostak, M. “Cross-Coupling of Amides by N–C Bond Activation,” Synlett 2016, 27, 2530-2540. ) (One of the top most read papers in Synlett).
63) Meng, G.; Shi, S.; Szostak, M. “Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling of Amides via Site-Selective N−C Bond Cleavage by Cooperative Catalysis,” ACS Catal. 2016, 6, 7335-7339. (Highlighted in Synfacts, 2017, 13, 0084).
62) Shi, S.; Szostak, R.; Szostak, M. “Proton-Coupled Electron Transfer in the Reduction of Carbonyls using SmI2–H2O: Implications for the Reductive Coupling of Acyl-Type Ketyl Radicals with SmI2–H2O,” Org. Biomol. Chem. 2016, 14, 9151-9157.
61) Hu, F.; Szostak, M. “Ruthenium(0)-Catalyzed C−H Arylation of Aromatic Imines under Neutral Conditions: Access to Biaryl Aldehydes,” Org. Lett. 2016, 18, 4186-4189.
60) Pace, V.; Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. “Structures of Highly Twisted Amides Relevant to Amide N−C Cross-Coupling: Evidence for Ground-State Amide Destabilization,” Chem. Eur. J. 2016, 22, 14494-14498.
59) Liu, C.; Meng, G.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. “N-Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki-Miyaura Coupling via N−C Cleavage,” Org. Lett. 2016, 18, 4194-4197. (Highlighted in Synfacts, 2016, 12, 1179; (Highlighted in Organic Process Research & Development, 2016, 20, 1691).
58) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. “Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N−C Cross-Coupling,” J. Org. Chem. 2016, 81, 8091-8094.
57) Hu, F.; Szostak, M. “Ruthenium(0)-Catalyzed Hydroarylation of Alkynes via Ketone-Directed C–H Functionalization Using In Situ-Generated Ruthenium Complexes,” Chem. Commun. 2016, 52, 9715-9718.
56) Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. “Highly Chemoselective Synthesis of Indolizidine Lactams by SmI2-Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds,” Chem. Eur. J. 2016, 22, 11949-11953. (Highlighted in Synfacts, 2016, 12, 1133).
55) Nareddy, P.; Jordan, F.; Brenner-Moyer, S. E.; Szostak, M. “Ruthenium(II)-Catalyzed Regioselective C–H Arylation of Cyclic and N,N-Dialkyl Benzamides with Boronic Acids by Weak Coordination,” ACS Catal. 2016, 6, 4755-4759. (One of the most accessed papers in ACS Catal. in June 2016).
54) Shi, S.; Szostak, M. “Efficient Synthesis of Diaryl Ketones by Nickel-Catalyzed Negishi Cross-Coupling of Amides via Carbon–Nitrogen Bond Cleavage at Room Temperature Accelerated by Solvent Effect,” Chem. Eur. J. 2016, 22, 10420-10424.
53) Liu, C.; Achtenhagen, M.; Szostak, M. “Chemoselective Ketone Synthesis by the Addition of Organometallics to N-Acylazetidines,” Org. Lett. 2016, 18, 2375-2378. (Highlighted in Synfacts, 2016, 12, 732). (Highlighted on Organic Chemistry Portal)
52) Liu, Y.; Meng, G.; Liu, R.; Szostak, M. “Sterically-Controlled Intermolecular Friedel-Crafts Acylation with Twisted Amides via Selective N–C Cleavage under Mild Conditions,” Chem. Commun. 2016, 52, 6841-6844.
51) Shi, S.; Meng, G.; Szostak, M. “Synthesis of Biaryls via Nickel Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Cleavage,” Angew. Chem. Int. Ed. 2016, 55, 6959-6963. (Highlighted on http://chemistry.rutgers.edu/). (Highlighted in The Celebration of Scholarship 2017).
50) Shi, S.; Lalancette, R.; Szostak, M. “Cyclization of Imides to 2-Azabicycles via Aminoketyl Radicals using SmI2–H2O: Reaction Development, Synthetic Scope, and Mechanistic Studies,” Synthesis 2016, 48, 1825-1854. (Special Issue: Cyclization Tactics and Strategies). (Highlighted as a News article).
49) Hu, F.; Lalancette, R.; Szostak, M. “Structural Characterization of N–Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N–C Cleavage,” Angew. Chem. Int. Ed. 2016, 55, 5062-5066.
48) Meng, G.; Szostak, M. “Palladium-Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Cleavage: General Strategy for Amide N–C Bond Activation,” Org. Biomol. Chem. 2016, 14, 5690-5707. (New Talent Issue).
47) Meng, G.; Szostak, M. “Rhodium-Catalyzed C–H Bond Functionalization with Amides by Double C–H/C–N Bond Activation,” Org. Lett. 2016, 18, 796-799. (The top most accessed paper in Org. Lett. in February 2016).
46) Patel, M.; Luo, F.; Khoshi, M. R.; Rabie, E.; Zhang, Q.; Flach, C. R.; Mendelsohn, R.; Garfunkel, E.; Szostak, M.; He, H. “P Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism,” ACS Nano 2016, 9, 2305-2315. (Highlighted on Science News)
2015
45) Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. “Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity and Synthetic Utility,” J. Am. Chem. Soc. 2015, 137, 14473-14480. (Highlighted in Synfacts, 2016, 12, 213).
44) Shi, S.; Szostak, M. “Aminoketyl Radicals in Organic Synthesis: Stereoselective Cyclization of 5- and 6-Membered Cyclic Imides to 2-Azabicycles using SmI2–H2O,” Org. Lett. 2015, 17, 5144-5147.
43) Meng, G.; Szostak, M. “General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically-Controlled Chemoselective N–C Activation,” Angew. Chem. Int. Ed. 2015, 54, 14518-14522.
42) Meng, G.; Szostak, M. “Sterically-Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides,” Org. Lett. 2015, 17, 4364-4367. (Highlighted on Organic Chemistry Portal).
41) Hu, F.; Szostak, M. “Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond,” Adv. Synth. Catal. 2015, 357, 2583-2614. (VIP paper).
40) Szostak, R.; Aubé, J.; Szostak, M. “Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon Bridged Twisted Amides using ab Initio Molecular Orbital Methods. Implications for Amidic Resonance along the C–N Rotational Pathway,” J. Org. Chem. 2015, 80, 7905-7927.
39) Szostak, R.; Aubé, J.; Szostak, M. “An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway,” Chem. Commun. 2015, 51, 6395-6398.
38) Hu, F.; Szostak, M. “Pd-Catalyzed C–H Activation: Expanding the Portfolio of Metal-Catalyzed Functionalization of Unreactive C–H Bonds by Arene–Chromium p-Complexation,” ChemCatChem 2015, 7, 1061-1063. (Highlight Article).
Prior to Rutgers:
37) Szostak, M.; Spain, M.; Sautier, B.; Procter, D. J. “Switching between Reaction Pathways by an Alcohol Cosolvent Effect: SmI2–Ethylene Glycol vs SmI2–H2O Mediated Synthesis of Uracils,” Org. Lett. 2014, 16, 5694-5697.
36) Szostak, M.; Spain, M.; Eberhart, A. J., Procter, D. J. “Mechanism of SmI2/Amine/H2O-Promoted Chemoselective Reductions of Carboxylic Acid Derivatives (Esters, Acids, and Amides) to Alcohols,” J. Org. Chem. 2014, 79, 11988-12003. (Special Issue on Mechanisms in Metal-Based Organic Chemistry).
35) Szostak, M.; Spain, M.; Procter, D. J. “Selective Synthesis of a,a-Dideuterio Alcohols by the Reduction of Carboxylic Acids Using SmI2 and D2O as Deuterium Source under SET Conditions,” Org. Lett. 2014, 16, 5052-5055.
34) Szostak, M.; Lyons, S. E.; Spain, M.; Procter, D. J. “Mechanistic Investigation of the Selective Reduction of Meldrum’s Acids to b-Hydroxy Acids using SmI2 and H2O,” Chem. Commun. 2014, 50, 8391-8394. (Special Issue on Non-Innocent Ligands).
33) Szostak, M.; Spain, M.; Procter, D. J. “Ketyl-Type Radicals from Cyclic and Acyclic Esters are Stabilized by SmI2(H2O)n – The Role of SmI2(H2O)n in Post-Electron Transfer Steps,” J. Am. Chem. Soc. 2014, 136, 8459-8466.
32) Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. “Highly Chemoselective Reduction of Amides (Primary, Secondary and Tertiary) to Alcohols using by SmI2/H2O/Amine under Mild Conditions,” J. Am. Chem. Soc. 2014, 136, 2268-2271. (Highlighted in Chemistry World 2014/04; one of the most accessed papers in JACS in March 2014, Highlighted in Synfacts, 2014, 10, 527).
31) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. “Cross-Coupling Reactions using Samarium(II) Iodide,” Chem. Rev. 2014, 114, 5959-6039.
30) Szostak, M.; Spain, M.; Procter, D. J. “Determination of the Effective Redox Potentials of SmI2, SmBr2, SmCl2 and their Complexes with Water by Reduction of Aromatic Hydrocarbons. Reduction of Anthracene (-E1/2 = 1.98 V) and Stilbene (-E1/2 = 2.21 V) by Samarium(II) Iodide–Water Complex,” J. Org. Chem. 2014, 79, 2522-2537.
29) Szostak, M.; Spain, M.; Procter, D. J. “On the Role of Pre- and Post-Electron Transfer Steps in the SmI2/H2O/Amine-Mediated Reduction of Esters: New Mechanistic Insights and Kinetic Studies,” Chem. Eur. J. 2014, 20, 4222-4226.
28) Szostak, M.; Sautier, B.; Spain, M.; Procter, D. J. “Electron Transfer Reduction of Nitriles using SmI2–Et3N–H2O: Synthetic Utility and Mechanism,” Org. Lett. 2014, 16, 1092-1095.
27) Szostak, M.; Sautier, B.; Procter, D. J. “Structural Analysis and Reactivity of Unusual Tetrahedral Intermediates Enabled by SmI2-Mediated Reduction of Barbituric Acids: Vinylogous N-Acyliminium Additions to a-Alkoxy-N-Acyl-Carbamides,” Chem. Commun. 2014, 50, 2518-2521.
26) Szostak, M.; Sautier, B.; Procter, D. J. “Stereoselective Capture of N-Acyliminium Ions Generated from a-Hydroxy-N-Acyl-Carbamides: Direct Synthesis of Uracils from Barbituric Acids Enabled by SmI2 Reduction,” Org. Lett. 2014, 16, 452-455.
25) Szostak, M.; Spain, M.; Choquette, K. A.; Flowers, R. A., II; Procter, D. J. “Substrate-Directable Electron Transfer Reactions. Dramatic Rate Enhancement in the Chemoselective Reduction of Cyclic Esters using SmI2–H2O: Mechanism, Scope and Synthetic Utility,” J. Am. Chem. Soc. 2013, 135, 15702-15705. (Highlighted in Synform 2014/02).
24) Szostak, M.; Sautier, B.; Spain, M.; Behlendorf, M.; Procter, D. J. “Selective Reduction of Barbituric Acids using SmI2–H2O: Synthesis, Reactivity and Structural Analysis of Tetrahedral Adducts,” Angew. Chem. Int. Ed. 2013, 52, 12559-12563. (Highlighted in Synfacts, 2014, 10, 189).
23) Szostak, M.; Spain, M.; Procter, D. J. “Non-Classical Lanthanide(II) Iodides: Uncovering the Importance of Proton Donors in TmI2-Promoted Electron Transfer. Facile C–N Bond Cleavage in Unactivated Amides,” Angew. Chem. Int. Ed. 2013, 52, 7237-7241. (Highlighted in Synfacts, 2013, 9, 1001).
22) Szostak, M.; Spain, M.; Procter, D. J. “Recent Advances in the Chemoselective Reduction of Functional Groups Mediated by Samarium(II) Iodide: a Single Electron Transfer Approach,” Chem. Soc. Rev. 2013, 42, 9155-9183.
21) Szostak, M.; Aubé, J. “Chemistry of Bridged Lactams and Related Heterocycles,” Chem. Rev. 2013, 113, 5701-5765.
20) Szostak, M.; Procter, D. J. “Beyond Samarium Diiodide: Vistas in Reductive Chemistry Mediated by Lanthanides(II),” Angew. Chem. Int. Ed. 2012, 51, 9238-9256.
19) Szostak, M.; Spain, M.; Procter, D. J. “Selective Synthesis of 3-Hydroxy Acids from Meldrum’s Acids Using SmI2–H2O,” Nat. Protoc. 2012, 7, 970-977.
18) Szostak, M.; Spain, M.; Procter, D. J. “Preparation of Samarium(II) Iodide: Quantitative Evaluation of the Effect of Water, Oxygen, and Peroxide Content, Preparative Methods, and the Activation of Samarium Metal,” J. Org. Chem. 2012, 77, 3049-3059. (Featured Article).
17) Szostak, M.; Spain, M.; Procter, D. J. “Electron Transfer Reduction of Carboxylic Acids Using SmI2–H2O–Et3N,” Org. Lett. 2012, 14, 840-843. (Highlighted in Synfacts, 2012, 8, 436).
16) Szostak, M.; Collins, K. D.; Fazakerley, N. J.; Spain, M.; Procter, D. J. “A General Electron Transfer Reduction of Lactones Using SmI2–H2O,” Org. Biomol. Chem. 2012, 10, 5820-5824. (10th Anniversary Issue).
15) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. “Selective Reductive Transformations Using Samarium Diiodide-Water,” Chem. Commun. 2012, 48, 330-346.
14) Szostak, M.; Procter, D. J. “Concise Syntheses of Strychnine and Englerin A: the Power of Reductive Cyclizations Triggered by Samarium Iodide,” Angew. Chem. Int. Ed. 2011, 50, 7737-7739.
13) Szostak, M.; Spain, M.; Procter, D. J. “Electron Transfer Reduction of Unactivated Esters Using SmI2–H2O,” Chem. Commun. 2011, 47, 10254-10256.
12) Szostak, M.; Aubé, J. “Medium-Bridged Lactams: a New Class of Non-Planar Amides,” Org. Biomol. Chem. 2011, 9, 27-35.
11) Szostak, M.; Yao, L.; Day, V. W.; Powell, D. R.; Aubé, J. “Structural Characterization of N-Protonated Amides: Regioselective N-Activation of Medium-Bridged Twisted Lactams,” J. Am. Chem. Soc. 2010, 132, 8836-8837.
10) Szostak, M.; Aubé, J. “Synthesis, Structural Analysis, and Reactivity of Bridged Orthoamides by Intramolecular Schmidt Reaction,” J. Am. Chem. Soc. 2010, 132, 2530-2531.
9) Szostak, M.; Yao, L.; Aubé, J. “Proximity Effects in Nucleophilic Addition Reactions to Medium-Bridged Twisted Lactams: Remarkably Stable Tetrahedral Intermediates,” J. Am. Chem. Soc. 2010, 132, 2078-2084.
8) Szostak, M.; Yao, L.; Aubé, J. “Synthesis of Medium-Bridged Twisted Lactams via Cation–π Control of the Regiochemistry of the Intramolecular Schmidt Reaction,” J. Org. Chem. 2010, 75, 1235-1243.
7) Szostak, M.; Aubé, J. “Synthesis and Rearrangement of a Bridged Thioamide,” Chem. Commun. 2009, 7122-7124.
6) Szostak, M.; Aubé, J. “Corey–Chaykovsky Epoxidation of Twisted Amides: Synthesis and Reactivity of Bridged Spiro-Epoxyamines,” J. Am. Chem. Soc. 2009, 131, 13246-13247.
5) Szostak, M.; Yao, L.; Aubé, J. “Cation–n Control of Regiochemistry of Intramolecular Schmidt Reactions en Route to Bridged Bicyclic Lactams,” Org. Lett. 2009, 11, 4386-4389.
4) Szostak, M.; Aubé, J. “Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy,” Org. Lett. 2009, 11, 3878-3881.
3) Szostak, M.; Yao, L.; Aubé, J. “Stability of Medium-Bridged Twisted Amides in Aqueous Solutions,” J. Org. Chem. 2009, 74, 1869-1875.
2) Wu, W.; Sil, D.; Szostak, M. L.; Malladi, S. S.; Warshakoon, H. J.; Kimbrell, M. R.; Cromer, J. R.; David, S. A. “Structure-Activity Relationships of Lipopolysaccharide Sequestration in Guanylhydrazone-Bearing Lipopolyamines,” Bioorg. Med. Chem. 2009, 17, 709-715.
1) Ryng, S.; Szostak, M. “Studies on the Deamination of the Ethyl Ester of 5-Amino-3-methylisoxazole-4-carboxylic Acid,” Pol. J. Chem. 2009, 83, 887-893.